Controlling Devices: Flowol: Combining Skills

Aim:

Design, write and debug programs that accomplish specific goals, including controlling or simulating physical systems; solve problems by decomposing them into smaller parts.

Use sequence, selection, and repetition in programs; work with variables and various forms of input and output.
Use logical reasoning to explain how some simple algorithms work and to detect and correct errors in algorithms and programs.
Children are introduced to a new scenario (robot toy) for which they must design and create their own programming solution. This should involve one or more inputs controlling one or more outputs. Some children will be able to include subroutines for clearer organisation.

I can design, write and debug my own flowchart program for a given task.

Success Criteria:

I can decompose a problem into smaller parts.
I can use repetition to check multiple inputs.
I can detect errors in a flowchart and correct them.

Key/New Words:

Flowol, flowchart, algorithm, control, output, mimic, simulation, insert, symbol, start, stop, delay, process, decision, input loop, subroutine.

Resources:

Lesson Pack
PC/laptop with Flowol 4 software

Preparation:

Robot Activity Sheet - as required

Prior Learning: Children will have created flowcharts using inputs and outputs in previous lessons in this unit.

Learning Sequence

\(\left.\begin{array}{l}Putting Skills into Practice: Explain that the aim of the final lesson is to put into practice some of the

skills developed during previous lessons in the unit. Encourage a discussion about what the children have

learnt to do with flowchart programming. Suggestions should include: turning outputs on/off, sequencing

instructions; using decisions to check on inputs; using repeating loops; programming subroutines.\end{array}\right\}\)| Robot Mimic: Introduce the Robot mimic and explore the various inputs and outputs available. Think of a |
| :--- |
| name for the robot! |

Taskit

Exploreit: Open up a new flowchart in Flowol and try using any of the other mimics that you have not programmed. Begin by exploring the inputs and outputs to see where they are and what they do. Design your own flowchart to make the simulation work.

Computing | Year 5 | Controlling Devices: Flowol | Combining Skills | Lesson 6

Combining Skills

Aim

- I can design, write and debug my own flowchart program for a given task.

Success Criteria

- I can decompose a problem into smaller parts.
- I can use repetition to check multiple inputs.
- I can detect errors in a flowchart and correct them.

Putting Skills into Practice

The aim of this final lesson is to put into practice some of the skills you've been developing.

What have you learnt to do with flowchart programming so far?

Putting Skills into Practice

Turning outputs on/off.

Using repeating loops.

Sequencing instructions.

Sub

Programming subroutines.

Robot Mimic

The Robot mimic has four inputs and four outputs.

Inputs

Four buttons on his chest:

- Square
- Triangle
- Circle
- Star

Outputs

Facial features:

- Antenna
- Left Eye
- Right Eye
- Mouth

A Robot Toy

Imagine this robot was a toy for a younger child. What could you program it to do?

Explore the inputs and outputs by clicking on them in the mimic.

First jot down notes about what you might want the robot to do, based on its features.

Programming the Robot

Robot Demo

In pairs, swap programs and demonstrate your program.

Explain to your partner any element that was not working as expected.

Can you debug the program together?

Evaluate each other's program by complimenting on what works well and
 suggesting a next step.

Aim

- I can design, write and debug my own flowchart program for a given task.

Success Criteria

- I can decompose a problem into smaller parts.
- I can use repetition to check multiple inputs.
- I can detect errors in a flowchart and correct them.

Regent Studies|www.regentstudies.com

I can design, write and debug my own flowchart program for a given task.

Flowchart Programming for a Robot

Think of a name for this robot:

The robot has four inputs (the coloured shapes on its chest) to act as buttons.
There are also four outputs. It can move its mouth, left eye, right eye and antenna.

Imagine it is a toy robot for a younger child. What could you program the outputs to do, as each button is pressed?
\qquad
\qquad

Design instructions and a flowchart to make the program work.

Challenge 1

Choose one input and one output. Create a flowchart to make the output respond when the input is activated.

Challenge 2

Develop the flowchart to control more than one output, using more than one of the input buttons.

Challenge 3

To make sure your flowchart program is well organised and functioning properly, develop your program to include subroutines for the separate actions.
Remember to keep testing and debugging your flowchart as your work and to save your work regularly.

Robot

Imagine it is a toy robot for a younger child. What could you program the outputs to do, as each button is pressed?
\qquad
\qquad

Design instructions and a flowchart to make the program work.

Challenge 1

Choose one input and one output. Create a flowchart to make the output respond when the input is activated.

Challenge 2

Develop the flowchart to control more than one output, using more than one of the input buttons.

Challenge 3

To make sure your flowchart program is well organised and functioning properly, develop your program to include subroutines for the separate actions.
Remember to keep testing and debugging your flowchart as your work and to save your work regularly.

Adult Guidance

This lesson is designed for use with Flowol software (intended for use with Version 4, but adaptable to earlier versions) and the Lighthouse mimic.
As a final lesson in the unit, some judgment can be made as to whether to return to devote more time to a previous skill using a different mimic; to direct children in developing the Robot mimic; or to allow more free choice with some of the other mimics that are bundled with the Flowol software. As a primary objective, children should be encouraged to put into practice some of the skills they have been developing during the previous lessons in the unit, in a new context.

See below for an example of flowcharts including subroutines for the Robot mimic.

This program is a starting point to control the eyes and antenna outputs, using the two inputs of the square and triangle. Further development could incorporate the mouth as another output or
 control the eyes separately, whilst also using the remaining two inputs of the circle and star.

The program demonstrates how the main flowchart (at the bottom) constantly repeats and loops to check for the square and triangle inputs, calling a single iteration of the relevant subroutine if so.

Note: The subroutine symbol should be set to repeat the subroutine 1 time. This prevents the programming becoming stuck in the subroutine loop and not returning to check other inputs.

Controlling Devices: Flowol | Combining Skills

I can design, write and debug my own flowchart program for a given task.		
I can decompose a problem into smaller parts.		
I can use repetition to check multiple inputs.		
I can detect errors in a flowchart and correct them.		

Controlling Devices: Flowol | Combining Skills

I can design, write and debug my own flowchart program for a given task.		
I can decompose a problem into smaller parts.		
I can use repetition to check multiple inputs.		
I can detect errors in a flowchart and correct them.		

Controlling Devices: Flowol | Combining Skills

I can design, write and debug my own flowchart program for a given task.		
I can decompose a problem into smaller parts.		
I can use repetition to check multiple inputs.		
I can detect errors in a flowchart and correct them.		

Controlling Devices: Flowol | Combining Skills

I can design, write and debug my own flowchart program for a given task.		
I can decompose a problem into smaller parts.		
I can use repetition to check multiple inputs.		
I can detect errors in a flowchart and correct them.		

Controlling Devices: Flowol | Combining Skills
I can design, write and debug my own flowchart program for a given task.

I can decompose a problem into smaller parts.

I can use repetition to check multiple inputs.

I can detect errors in a flowchart and correct them.

Controlling Devices: Flowol | Combining Skills

I can design, write and debug my own flowchart program for a given task.		
I can decompose a problem into smaller parts.		
I can use repetition to check multiple inputs.		
I can detect errors in a flowchart and correct them.		

